Module arti.types
None
None
View Source
from __future__ import annotations
__path__ = __import__("pkgutil").extend_path(__path__, __name__)
from abc import abstractmethod
from collections.abc import Iterable, Mapping
from operator import attrgetter
from typing import Any, ClassVar, Literal, Optional
from pydantic import PrivateAttr, validator
from pydantic import __version__ as pydantic_version
from arti.internal.models import Model
from arti.internal.type_hints import lenient_issubclass
from arti.internal.utils import NoCopyDict, class_name, frozendict, register
DEFAULT_ANONYMOUS_NAME = "anon"
class Type(Model):
"""Type represents a data type."""
_abstract_ = True
# NOTE: Exclude the description to minimize fingerprint changes (and thus rebuilds).
_fingerprint_excludes_ = frozenset(["description"])
description: Optional[str]
nullable: bool = False
@property
def friendly_key(self) -> str:
"""A human-readable class-name like key representing this Type.
The key doesn't have to be unique, just a best effort, meaningful string.
"""
return self._class_key_
def is_partitioned(type_: Type) -> bool:
"""Helper function to determine whether the type is partitioned."""
return isinstance(type_, Collection) and bool(type_.partition_fields)
class _ContainerMixin(Model):
element: Type
class _NamedMixin(Model):
name: str = DEFAULT_ANONYMOUS_NAME
@classmethod
def _pydantic_type_system_post_field_conversion_hook_(
cls, type_: Type, *, name: str, required: bool
) -> Type:
type_ = super()._pydantic_type_system_post_field_conversion_hook_(
type_, name=name, required=required
)
if "name" not in type_.__fields_set__:
type_ = type_.copy(update={"name": name})
return type_
@property
@abstractmethod
def _default_friendly_key(self) -> str:
raise NotImplementedError()
@property
def friendly_key(self) -> str:
return self._default_friendly_key if self.name == DEFAULT_ANONYMOUS_NAME else self.name
class _TimeMixin(Model):
precision: Literal["second", "millisecond", "microsecond", "nanosecond"]
########################
# Core Artigraph Types #
########################
class _Numeric(Type):
pass
class _Float(_Numeric):
pass
class _Int(_Numeric):
pass
class Binary(Type):
byte_size: Optional[int]
class Boolean(Type):
pass
class Date(Type):
pass
class DateTime(_TimeMixin, Type):
"""A Date and Time as shown on a calendar and clock, independent of timezone."""
class Enum(_NamedMixin, Type):
type: Type
items: frozenset[Any]
@validator("items", pre=True)
@classmethod
def _cast_values(cls, items: Any) -> Any:
if isinstance(items, Iterable) and not isinstance(items, Mapping):
return frozenset(items)
return items
@validator("items")
@classmethod
def _validate_values(cls, items: frozenset[Any], values: dict[str, Any]) -> frozenset[Any]:
from arti.types.python import python_type_system
if len(items) == 0:
raise ValueError("cannot be empty.")
# `type` will be missing if it doesn't pass validation.
if (arti_type := values.get("type")) is None:
return items
py_type = python_type_system.to_system(arti_type, hints={})
mismatched_items = [item for item in items if not lenient_issubclass(type(item), py_type)]
if mismatched_items:
raise ValueError(f"incompatible {arti_type} ({py_type}) item(s): {mismatched_items}")
return items
@property
def _default_friendly_key(self) -> str:
return f"{self.type.friendly_key}{self._class_key_}"
class Float16(_Float):
pass
class Float32(_Float):
pass
class Float64(_Float):
pass
class Geography(Type):
format: Optional[str] # "WKB", "WKT", etc
srid: Optional[str]
class Int8(_Int):
pass
class Int16(_Int):
pass
class Int32(_Int):
pass
class Int64(_Int):
pass
class List(_ContainerMixin, Type):
@property
def friendly_key(self) -> str:
return f"{self.element.friendly_key}{self._class_key_}"
class Collection(_NamedMixin, List):
"""A collection of elements with partition and cluster metadata.
Collections should not be nested in other types.
"""
partition_by: tuple[str, ...] = ()
cluster_by: tuple[str, ...] = ()
@validator("partition_by", "cluster_by")
@classmethod
def _validate_field_ref(
cls, references: tuple[str, ...], values: dict[str, Any]
) -> tuple[str, ...]:
if (element := values.get("element")) is None:
return references
if references and not isinstance(element, Struct):
raise ValueError("requires element to be a Struct")
known, requested = set(element.fields), set(references)
if unknown := requested - known:
raise ValueError(f"unknown field(s): {unknown}")
return references
@validator("cluster_by")
@classmethod
def _validate_cluster_by(
cls, cluster_by: tuple[str, ...], values: dict[str, Any]
) -> tuple[str, ...]:
if (partition_by := values.get("partition_by")) is None:
return cluster_by
if overlapping := set(cluster_by) & set(partition_by):
raise ValueError(f"clustering fields overlap with partition fields: {overlapping}")
return cluster_by
@property
def _default_friendly_key(self) -> str:
return f"{self.element.friendly_key}{self._class_key_}"
@property
def fields(self) -> frozendict[str, Type]:
"""Shorthand accessor to access Struct element fields.
If the element is not a Struct, an AttributeError will be raised.
"""
return self.element.fields # type: ignore[attr-defined,no-any-return] # We want the standard AttributeError
@property
def partition_fields(self) -> frozendict[str, Type]:
if not isinstance(self.element, Struct):
return frozendict()
return frozendict({name: self.element.fields[name] for name in self.partition_by})
class Map(Type):
key: Type
value: Type
@property
def friendly_key(self) -> str:
return f"{self.key.friendly_key}To{self.value.friendly_key}"
class Null(Type):
pass
class Set(_ContainerMixin, Type):
@property
def friendly_key(self) -> str:
return f"{self.element.friendly_key}{self._class_key_}"
class String(Type):
pass
class Struct(_NamedMixin, Type):
fields: frozendict[str, Type]
@property
def _default_friendly_key(self) -> str:
return f"Custom{self._class_key_}" # :shrug:
class Time(_TimeMixin, Type):
pass
class Timestamp(_TimeMixin, Type):
"""UTC timestamp with configurable precision."""
@property
def friendly_key(self) -> str:
return f"{self.precision.title()}{self._class_key_}"
class UInt8(_Int):
pass
class UInt16(_Int):
pass
class UInt32(_Int):
pass
class UInt64(_Int):
pass
##############################
# Type conversion interfaces #
##############################
class TypeAdapter:
"""TypeAdapter maps between Artigraph types and a foreign type system."""
key: ClassVar[str] = class_name()
artigraph: ClassVar[type[Type]] # The internal Artigraph Type
system: ClassVar[Any] # The external system's type
priority: ClassVar[int] = 0 # Set the priority of this mapping. Higher is better.
@classmethod
def matches_artigraph(cls, type_: Type, *, hints: dict[str, Any]) -> bool:
return isinstance(type_, cls.artigraph)
@classmethod
def to_artigraph(cls, type_: Any, *, hints: dict[str, Any], type_system: TypeSystem) -> Type:
raise NotImplementedError()
@classmethod
def matches_system(cls, type_: Any, *, hints: dict[str, Any]) -> bool:
raise NotImplementedError()
@classmethod
def to_system(cls, type_: Type, *, hints: dict[str, Any], type_system: TypeSystem) -> Any:
raise NotImplementedError()
# _ScalarClassTypeAdapter can be used for scalars defined as python types (eg: int or str for the
# python TypeSystem).
class _ScalarClassTypeAdapter(TypeAdapter):
@classmethod
def to_artigraph(cls, type_: Any, *, hints: dict[str, Any], type_system: TypeSystem) -> Type:
return cls.artigraph()
@classmethod
def matches_system(cls, type_: Any, *, hints: dict[str, Any]) -> bool:
return lenient_issubclass(type_, cls.system)
@classmethod
def to_system(cls, type_: Type, *, hints: dict[str, Any], type_system: TypeSystem) -> Any:
return cls.system
@classmethod
def generate(
cls,
*,
artigraph: type[Type],
system: Any,
priority: int = 0,
type_system: TypeSystem,
name: Optional[str] = None,
) -> type[TypeAdapter]:
"""Generate a _ScalarClassTypeAdapter subclass for the scalar system type."""
name = name or f"{type_system.key}{artigraph.__name__}"
return type_system.register_adapter(
type(
name,
(cls,),
{"artigraph": artigraph, "system": system, "priority": priority},
)
)
class TypeSystem(Model):
key: str
extends: tuple[TypeSystem, ...] = ()
# NOTE: Use a NoCopyDict to avoid copies of the registry. Otherwise, TypeSystems that extend
# this TypeSystem will only see the adapters registered *as of initialization* (as pydantic
# would deepcopy the TypeSystems in the `extends` argument).
_adapter_by_key: NoCopyDict[str, type[TypeAdapter]] = PrivateAttr(default_factory=NoCopyDict)
def register_adapter(self, adapter: type[TypeAdapter]) -> type[TypeAdapter]:
return register(self._adapter_by_key, adapter.key, adapter)
@property
def _priority_sorted_adapters(self) -> list[type[TypeAdapter]]:
return sorted(self._adapter_by_key.values(), key=attrgetter("priority"), reverse=True)
def to_artigraph(
self, type_: Any, *, hints: dict[str, Any], root_type_system: Optional[TypeSystem] = None
) -> Type:
root_type_system = root_type_system or self
for adapter in self._priority_sorted_adapters:
if adapter.matches_system(type_, hints=hints):
return adapter.to_artigraph(type_, hints=hints, type_system=root_type_system)
for type_system in self.extends:
try:
return type_system.to_artigraph(
type_, hints=hints, root_type_system=root_type_system
)
except NotImplementedError:
pass
raise NotImplementedError(f"No {root_type_system} adapter for system type: {type_}.")
def to_system(
self, type_: Type, *, hints: dict[str, Any], root_type_system: Optional[TypeSystem] = None
) -> Any:
root_type_system = root_type_system or self
for adapter in self._priority_sorted_adapters:
if adapter.matches_artigraph(type_, hints=hints):
return adapter.to_system(type_, hints=hints, type_system=root_type_system)
for type_system in self.extends:
try:
return type_system.to_system(type_, hints=hints, root_type_system=root_type_system)
except NotImplementedError:
pass
raise NotImplementedError(f"No {root_type_system} adapter for Artigraph type: {type_}.")
if tuple(int(i) for i in pydantic_version.split(".")) < (1, 10): # pragma: no cover
# Fix ForwardRefs in outer_type_ before https://github.com/samuelcolvin/pydantic/pull/4249
TypeSystem.__fields__["extends"].outer_type_ = tuple[TypeSystem, ...]
Sub-modules
- arti.types.bigquery
- arti.types.numpy
- arti.types.pandas
- arti.types.pyarrow
- arti.types.pydantic
- arti.types.python
Variables
DEFAULT_ANONYMOUS_NAME
pydantic_version
Functions
is_partitioned
def is_partitioned(
type_: 'Type'
) -> 'bool'
Helper function to determine whether the type is partitioned.
View Source
def is_partitioned(type_: Type) -> bool:
"""Helper function to determine whether the type is partitioned."""
return isinstance(type_, Collection) and bool(type_.partition_fields)
Classes
Binary
class Binary(
__pydantic_self__,
**data: Any
)
View Source
class Binary(Type):
byte_size: Optional[int]
Ancestors (in MRO)
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
A human-readable class-name like key representing this Type.
The key doesn't have to be unique, just a best effort, meaningful string.
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Boolean
class Boolean(
__pydantic_self__,
**data: Any
)
View Source
class Boolean(Type):
pass
Ancestors (in MRO)
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
A human-readable class-name like key representing this Type.
The key doesn't have to be unique, just a best effort, meaningful string.
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Collection
class Collection(
__pydantic_self__,
**data: Any
)
View Source
class Collection(_NamedMixin, List):
"""A collection of elements with partition and cluster metadata.
Collections should not be nested in other types.
"""
partition_by: tuple[str, ...] = ()
cluster_by: tuple[str, ...] = ()
@validator("partition_by", "cluster_by")
@classmethod
def _validate_field_ref(
cls, references: tuple[str, ...], values: dict[str, Any]
) -> tuple[str, ...]:
if (element := values.get("element")) is None:
return references
if references and not isinstance(element, Struct):
raise ValueError("requires element to be a Struct")
known, requested = set(element.fields), set(references)
if unknown := requested - known:
raise ValueError(f"unknown field(s): {unknown}")
return references
@validator("cluster_by")
@classmethod
def _validate_cluster_by(
cls, cluster_by: tuple[str, ...], values: dict[str, Any]
) -> tuple[str, ...]:
if (partition_by := values.get("partition_by")) is None:
return cluster_by
if overlapping := set(cluster_by) & set(partition_by):
raise ValueError(f"clustering fields overlap with partition fields: {overlapping}")
return cluster_by
@property
def _default_friendly_key(self) -> str:
return f"{self.element.friendly_key}{self._class_key_}"
@property
def fields(self) -> frozendict[str, Type]:
"""Shorthand accessor to access Struct element fields.
If the element is not a Struct, an AttributeError will be raised.
"""
return self.element.fields # type: ignore[attr-defined,no-any-return] # We want the standard AttributeError
@property
def partition_fields(self) -> frozendict[str, Type]:
if not isinstance(self.element, Struct):
return frozendict()
return frozendict({name: self.element.fields[name] for name in self.partition_by})
Ancestors (in MRO)
- arti.types._NamedMixin
- arti.types.List
- arti.types._ContainerMixin
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fields
Shorthand accessor to access Struct element fields.
If the element is not a Struct, an AttributeError will be raised.
fingerprint
friendly_key
partition_fields
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Date
class Date(
__pydantic_self__,
**data: Any
)
View Source
class Date(Type):
pass
Ancestors (in MRO)
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
A human-readable class-name like key representing this Type.
The key doesn't have to be unique, just a best effort, meaningful string.
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
DateTime
class DateTime(
__pydantic_self__,
**data: Any
)
View Source
class DateTime(_TimeMixin, Type):
"""A Date and Time as shown on a calendar and clock, independent of timezone."""
Ancestors (in MRO)
- arti.types._TimeMixin
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
A human-readable class-name like key representing this Type.
The key doesn't have to be unique, just a best effort, meaningful string.
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Enum
class Enum(
__pydantic_self__,
**data: Any
)
View Source
class Enum(_NamedMixin, Type):
type: Type
items: frozenset[Any]
@validator("items", pre=True)
@classmethod
def _cast_values(cls, items: Any) -> Any:
if isinstance(items, Iterable) and not isinstance(items, Mapping):
return frozenset(items)
return items
@validator("items")
@classmethod
def _validate_values(cls, items: frozenset[Any], values: dict[str, Any]) -> frozenset[Any]:
from arti.types.python import python_type_system
if len(items) == 0:
raise ValueError("cannot be empty.")
# `type` will be missing if it doesn't pass validation.
if (arti_type := values.get("type")) is None:
return items
py_type = python_type_system.to_system(arti_type, hints={})
mismatched_items = [item for item in items if not lenient_issubclass(type(item), py_type)]
if mismatched_items:
raise ValueError(f"incompatible {arti_type} ({py_type}) item(s): {mismatched_items}")
return items
@property
def _default_friendly_key(self) -> str:
return f"{self.type.friendly_key}{self._class_key_}"
Ancestors (in MRO)
- arti.types._NamedMixin
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Float16
class Float16(
__pydantic_self__,
**data: Any
)
View Source
class Float16(_Float):
pass
Ancestors (in MRO)
- arti.types._Float
- arti.types._Numeric
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
A human-readable class-name like key representing this Type.
The key doesn't have to be unique, just a best effort, meaningful string.
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Float32
class Float32(
__pydantic_self__,
**data: Any
)
View Source
class Float32(_Float):
pass
Ancestors (in MRO)
- arti.types._Float
- arti.types._Numeric
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
A human-readable class-name like key representing this Type.
The key doesn't have to be unique, just a best effort, meaningful string.
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Float64
class Float64(
__pydantic_self__,
**data: Any
)
View Source
class Float64(_Float):
pass
Ancestors (in MRO)
- arti.types._Float
- arti.types._Numeric
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
A human-readable class-name like key representing this Type.
The key doesn't have to be unique, just a best effort, meaningful string.
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Geography
class Geography(
__pydantic_self__,
**data: Any
)
View Source
class Geography(Type):
format: Optional[str] # "WKB", "WKT", etc
srid: Optional[str]
Ancestors (in MRO)
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
A human-readable class-name like key representing this Type.
The key doesn't have to be unique, just a best effort, meaningful string.
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Int16
class Int16(
__pydantic_self__,
**data: Any
)
View Source
class Int16(_Int):
pass
Ancestors (in MRO)
- arti.types._Int
- arti.types._Numeric
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
A human-readable class-name like key representing this Type.
The key doesn't have to be unique, just a best effort, meaningful string.
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Int32
class Int32(
__pydantic_self__,
**data: Any
)
View Source
class Int32(_Int):
pass
Ancestors (in MRO)
- arti.types._Int
- arti.types._Numeric
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
A human-readable class-name like key representing this Type.
The key doesn't have to be unique, just a best effort, meaningful string.
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Int64
class Int64(
__pydantic_self__,
**data: Any
)
View Source
class Int64(_Int):
pass
Ancestors (in MRO)
- arti.types._Int
- arti.types._Numeric
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
A human-readable class-name like key representing this Type.
The key doesn't have to be unique, just a best effort, meaningful string.
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Int8
class Int8(
__pydantic_self__,
**data: Any
)
View Source
class Int8(_Int):
pass
Ancestors (in MRO)
- arti.types._Int
- arti.types._Numeric
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
A human-readable class-name like key representing this Type.
The key doesn't have to be unique, just a best effort, meaningful string.
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
List
class List(
__pydantic_self__,
**data: Any
)
View Source
class List(_ContainerMixin, Type):
@property
def friendly_key(self) -> str:
return f"{self.element.friendly_key}{self._class_key_}"
Ancestors (in MRO)
- arti.types._ContainerMixin
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Descendants
- arti.types.Collection
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Map
class Map(
__pydantic_self__,
**data: Any
)
View Source
class Map(Type):
key: Type
value: Type
@property
def friendly_key(self) -> str:
return f"{self.key.friendly_key}To{self.value.friendly_key}"
Ancestors (in MRO)
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Null
class Null(
__pydantic_self__,
**data: Any
)
View Source
class Null(Type):
pass
Ancestors (in MRO)
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
A human-readable class-name like key representing this Type.
The key doesn't have to be unique, just a best effort, meaningful string.
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Set
class Set(
__pydantic_self__,
**data: Any
)
View Source
class Set(_ContainerMixin, Type):
@property
def friendly_key(self) -> str:
return f"{self.element.friendly_key}{self._class_key_}"
Ancestors (in MRO)
- arti.types._ContainerMixin
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
String
class String(
__pydantic_self__,
**data: Any
)
View Source
class String(Type):
pass
Ancestors (in MRO)
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
A human-readable class-name like key representing this Type.
The key doesn't have to be unique, just a best effort, meaningful string.
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Struct
class Struct(
__pydantic_self__,
**data: Any
)
View Source
class Struct(_NamedMixin, Type):
fields: frozendict[str, Type]
@property
def _default_friendly_key(self) -> str:
return f"Custom{self._class_key_}" # :shrug:
Ancestors (in MRO)
- arti.types._NamedMixin
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Time
class Time(
__pydantic_self__,
**data: Any
)
View Source
class Time(_TimeMixin, Type):
pass
Ancestors (in MRO)
- arti.types._TimeMixin
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
A human-readable class-name like key representing this Type.
The key doesn't have to be unique, just a best effort, meaningful string.
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Timestamp
class Timestamp(
__pydantic_self__,
**data: Any
)
View Source
class Timestamp(_TimeMixin, Type):
"""UTC timestamp with configurable precision."""
@property
def friendly_key(self) -> str:
return f"{self.precision.title()}{self._class_key_}"
Ancestors (in MRO)
- arti.types._TimeMixin
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Type
class Type(
__pydantic_self__,
**data: Any
)
View Source
class Type(Model):
"""Type represents a data type."""
_abstract_ = True
# NOTE: Exclude the description to minimize fingerprint changes (and thus rebuilds).
_fingerprint_excludes_ = frozenset(["description"])
description: Optional[str]
nullable: bool = False
@property
def friendly_key(self) -> str:
"""A human-readable class-name like key representing this Type.
The key doesn't have to be unique, just a best effort, meaningful string.
"""
return self._class_key_
Ancestors (in MRO)
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Descendants
- arti.types._Numeric
- arti.types.Binary
- arti.types.Boolean
- arti.types.Date
- arti.types.DateTime
- arti.types.Enum
- arti.types.Geography
- arti.types.List
- arti.types.Map
- arti.types.Null
- arti.types.Set
- arti.types.String
- arti.types.Struct
- arti.types.Time
- arti.types.Timestamp
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
A human-readable class-name like key representing this Type.
The key doesn't have to be unique, just a best effort, meaningful string.
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
TypeAdapter
class TypeAdapter(
/,
*args,
**kwargs
)
View Source
class TypeAdapter:
"""TypeAdapter maps between Artigraph types and a foreign type system."""
key: ClassVar[str] = class_name()
artigraph: ClassVar[type[Type]] # The internal Artigraph Type
system: ClassVar[Any] # The external system's type
priority: ClassVar[int] = 0 # Set the priority of this mapping. Higher is better.
@classmethod
def matches_artigraph(cls, type_: Type, *, hints: dict[str, Any]) -> bool:
return isinstance(type_, cls.artigraph)
@classmethod
def to_artigraph(cls, type_: Any, *, hints: dict[str, Any], type_system: TypeSystem) -> Type:
raise NotImplementedError()
@classmethod
def matches_system(cls, type_: Any, *, hints: dict[str, Any]) -> bool:
raise NotImplementedError()
@classmethod
def to_system(cls, type_: Type, *, hints: dict[str, Any], type_system: TypeSystem) -> Any:
raise NotImplementedError()
Descendants
- arti.types._ScalarClassTypeAdapter
- arti.types.python.PyValueContainer
- arti.types.python.PyLiteral
- arti.types.python.PyMap
- arti.types.python.PyOptional
- arti.types.python.PyStruct
- arti.types.bigquery._BigQueryTypeAdapter
- arti.types.bigquery.ListFieldTypeAdapter
- arti.types.bigquery.TableTypeAdapter
- arti.types.numpy.ArrayAdapter
- arti.types.pandas.SeriesAdapter
- arti.types.pandas.DataFrameAdapter
- arti.types.pyarrow._PyarrowTypeAdapter
- arti.types.pydantic.BaseModelAdapter
Class variables
key
priority
Static methods
matches_artigraph
def matches_artigraph(
type_: 'Type',
*,
hints: 'dict[str, Any]'
) -> 'bool'
View Source
@classmethod
def matches_artigraph(cls, type_: Type, *, hints: dict[str, Any]) -> bool:
return isinstance(type_, cls.artigraph)
matches_system
def matches_system(
type_: 'Any',
*,
hints: 'dict[str, Any]'
) -> 'bool'
View Source
@classmethod
def matches_system(cls, type_: Any, *, hints: dict[str, Any]) -> bool:
raise NotImplementedError()
to_artigraph
def to_artigraph(
type_: 'Any',
*,
hints: 'dict[str, Any]',
type_system: 'TypeSystem'
) -> 'Type'
View Source
@classmethod
def to_artigraph(cls, type_: Any, *, hints: dict[str, Any], type_system: TypeSystem) -> Type:
raise NotImplementedError()
to_system
def to_system(
type_: 'Type',
*,
hints: 'dict[str, Any]',
type_system: 'TypeSystem'
) -> 'Any'
View Source
@classmethod
def to_system(cls, type_: Type, *, hints: dict[str, Any], type_system: TypeSystem) -> Any:
raise NotImplementedError()
TypeSystem
class TypeSystem(
__pydantic_self__,
**data: Any
)
View Source
class TypeSystem(Model):
key: str
extends: tuple[TypeSystem, ...] = ()
# NOTE: Use a NoCopyDict to avoid copies of the registry. Otherwise, TypeSystems that extend
# this TypeSystem will only see the adapters registered *as of initialization* (as pydantic
# would deepcopy the TypeSystems in the `extends` argument).
_adapter_by_key: NoCopyDict[str, type[TypeAdapter]] = PrivateAttr(default_factory=NoCopyDict)
def register_adapter(self, adapter: type[TypeAdapter]) -> type[TypeAdapter]:
return register(self._adapter_by_key, adapter.key, adapter)
@property
def _priority_sorted_adapters(self) -> list[type[TypeAdapter]]:
return sorted(self._adapter_by_key.values(), key=attrgetter("priority"), reverse=True)
def to_artigraph(
self, type_: Any, *, hints: dict[str, Any], root_type_system: Optional[TypeSystem] = None
) -> Type:
root_type_system = root_type_system or self
for adapter in self._priority_sorted_adapters:
if adapter.matches_system(type_, hints=hints):
return adapter.to_artigraph(type_, hints=hints, type_system=root_type_system)
for type_system in self.extends:
try:
return type_system.to_artigraph(
type_, hints=hints, root_type_system=root_type_system
)
except NotImplementedError:
pass
raise NotImplementedError(f"No {root_type_system} adapter for system type: {type_}.")
def to_system(
self, type_: Type, *, hints: dict[str, Any], root_type_system: Optional[TypeSystem] = None
) -> Any:
root_type_system = root_type_system or self
for adapter in self._priority_sorted_adapters:
if adapter.matches_artigraph(type_, hints=hints):
return adapter.to_system(type_, hints=hints, type_system=root_type_system)
for type_system in self.extends:
try:
return type_system.to_system(type_, hints=hints, root_type_system=root_type_system)
except NotImplementedError:
pass
raise NotImplementedError(f"No {root_type_system} adapter for Artigraph type: {type_}.")
Ancestors (in MRO)
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
register_adapter
def register_adapter(
self,
adapter: 'type[TypeAdapter]'
) -> 'type[TypeAdapter]'
View Source
def register_adapter(self, adapter: type[TypeAdapter]) -> type[TypeAdapter]:
return register(self._adapter_by_key, adapter.key, adapter)
to_artigraph
def to_artigraph(
self,
type_: 'Any',
*,
hints: 'dict[str, Any]',
root_type_system: 'Optional[TypeSystem]' = None
) -> 'Type'
View Source
def to_artigraph(
self, type_: Any, *, hints: dict[str, Any], root_type_system: Optional[TypeSystem] = None
) -> Type:
root_type_system = root_type_system or self
for adapter in self._priority_sorted_adapters:
if adapter.matches_system(type_, hints=hints):
return adapter.to_artigraph(type_, hints=hints, type_system=root_type_system)
for type_system in self.extends:
try:
return type_system.to_artigraph(
type_, hints=hints, root_type_system=root_type_system
)
except NotImplementedError:
pass
raise NotImplementedError(f"No {root_type_system} adapter for system type: {type_}.")
to_system
def to_system(
self,
type_: 'Type',
*,
hints: 'dict[str, Any]',
root_type_system: 'Optional[TypeSystem]' = None
) -> 'Any'
View Source
def to_system(
self, type_: Type, *, hints: dict[str, Any], root_type_system: Optional[TypeSystem] = None
) -> Any:
root_type_system = root_type_system or self
for adapter in self._priority_sorted_adapters:
if adapter.matches_artigraph(type_, hints=hints):
return adapter.to_system(type_, hints=hints, type_system=root_type_system)
for type_system in self.extends:
try:
return type_system.to_system(type_, hints=hints, root_type_system=root_type_system)
except NotImplementedError:
pass
raise NotImplementedError(f"No {root_type_system} adapter for Artigraph type: {type_}.")
UInt16
class UInt16(
__pydantic_self__,
**data: Any
)
View Source
class UInt16(_Int):
pass
Ancestors (in MRO)
- arti.types._Int
- arti.types._Numeric
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
A human-readable class-name like key representing this Type.
The key doesn't have to be unique, just a best effort, meaningful string.
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
UInt32
class UInt32(
__pydantic_self__,
**data: Any
)
View Source
class UInt32(_Int):
pass
Ancestors (in MRO)
- arti.types._Int
- arti.types._Numeric
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
A human-readable class-name like key representing this Type.
The key doesn't have to be unique, just a best effort, meaningful string.
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
UInt64
class UInt64(
__pydantic_self__,
**data: Any
)
View Source
class UInt64(_Int):
pass
Ancestors (in MRO)
- arti.types._Int
- arti.types._Numeric
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
A human-readable class-name like key representing this Type.
The key doesn't have to be unique, just a best effort, meaningful string.
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
UInt8
class UInt8(
__pydantic_self__,
**data: Any
)
View Source
class UInt8(_Int):
pass
Ancestors (in MRO)
- arti.types._Int
- arti.types._Numeric
- arti.types.Type
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
obj: Any
) -> 'Model'
parse_file
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
obj: Any
) -> 'Model'
parse_raw
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
value: Any
) -> 'Model'
Instance variables
fingerprint
friendly_key
A human-readable class-name like key representing this Type.
The key doesn't have to be unique, just a best effort, meaningful string.
Methods
copy
def copy(
self,
*,
deep: 'bool' = False,
validate: 'bool' = True,
**kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | fields to include in new model | None |
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to True to make a deep copy of the model |
None |
Returns:
| Type | Description |
|---|---|
| None | new model instance |
View Source
def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
copy = super().copy(deep=deep, **kwargs)
if validate:
# NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
# is normal `.copy` behavior).
#
# To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
# (which includes those originally set + updated).
fields_set = copy.__fields_set__
copy = copy.validate(
dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
)
# Use object.__setattr__ to bypass frozen model assignment errors
object.__setattr__(copy, "__fields_set__", set(fields_set))
# Copy over the private attributes, which are missing after validation (since we're only
# passing the fields).
for name in self.__private_attributes__:
if (value := getattr(self, name, Undefined)) is not Undefined:
if deep:
value = deepcopy(value)
object.__setattr__(copy, name, value)
return copy
dict
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().