Module arti.storage.literal
None
None
View Source
from __future__ import annotations
from typing import Optional
from arti.fingerprints import Fingerprint
from arti.partitions import CompositeKey, InputFingerprints
from arti.storage import Storage, StoragePartition
_not_written_err = FileNotFoundError("Literal has not been written yet")
class StringLiteralPartition(StoragePartition):
    id: str
    value: Optional[str]
    def compute_content_fingerprint(self) -> Fingerprint:
        if self.value is None:
            raise _not_written_err
        return Fingerprint.from_string(self.value)
class StringLiteral(Storage[StringLiteralPartition]):
    """StringLiteral stores a literal String value directly in the Backend."""
    id: str = "{graph_name}/{path_tags}/{names}/{partition_key_spec}/{input_fingerprint}/{name}{extension}"
    value: Optional[str]
    def discover_partitions(
        self, input_fingerprints: InputFingerprints = InputFingerprints()
    ) -> tuple[StringLiteralPartition, ...]:
        if input_fingerprints and self.value is not None:
            raise ValueError(
                f"Literal storage cannot have a `value` preset ({self.value}) for a Producer output"
            )
        if self.key_types and not input_fingerprints:
            # We won't know what partitions to lookup.
            raise ValueError("Literal storage can only be partitioned if generated by a Producer.")
        # Existing StringLiteralPartitions may be stored in the Graph's backend, however we don't
        # have access here to lookup.
        if self.value is None:
            return ()
        return tuple(
            self.generate_partition(input_fingerprint=input_fingerprint, keys=keys)
            for keys, input_fingerprint in (
                input_fingerprints or {CompositeKey(): Fingerprint.empty()}
            ).items()
        )
Classes
StringLiteral
class StringLiteral(
    __pydantic_self__,
    **data: Any
)
View Source
class StringLiteral(Storage[StringLiteralPartition]):
    """StringLiteral stores a literal String value directly in the Backend."""
    id: str = "{graph_name}/{path_tags}/{names}/{partition_key_spec}/{input_fingerprint}/{name}{extension}"
    value: Optional[str]
    def discover_partitions(
        self, input_fingerprints: InputFingerprints = InputFingerprints()
    ) -> tuple[StringLiteralPartition, ...]:
        if input_fingerprints and self.value is not None:
            raise ValueError(
                f"Literal storage cannot have a `value` preset ({self.value}) for a Producer output"
            )
        if self.key_types and not input_fingerprints:
            # We won't know what partitions to lookup.
            raise ValueError("Literal storage can only be partitioned if generated by a Producer.")
        # Existing StringLiteralPartitions may be stored in the Graph's backend, however we don't
        # have access here to lookup.
        if self.value is None:
            return ()
        return tuple(
            self.generate_partition(input_fingerprint=input_fingerprint, keys=keys)
            for keys, input_fingerprint in (
                input_fingerprints or {CompositeKey(): Fingerprint.empty()}
            ).items()
        )
Ancestors (in MRO)
- arti.storage.Storage
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
- typing.Generic
Class variables
Config
key_value_sep
partition_name_component_sep
segment_sep
storage_partition_type
Static methods
construct
def construct(
    _fields_set: Optional[ForwardRef('SetStr')] = None,
    **values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
    obj: Any
) -> 'Model'
get_default
def get_default(
) -> 'Storage[StoragePartition]'
View Source
    @classmethod
    def get_default(cls) -> Storage[StoragePartition]:
        from arti.storage.literal import StringLiteral
        return StringLiteral()  # TODO: Support some sort of configurable defaults.
parse_file
def parse_file(
    path: Union[str, pathlib.Path],
    *,
    content_type: 'unicode' = None,
    encoding: 'unicode' = 'utf8',
    proto: pydantic.parse.Protocol = None,
    allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
    obj: Any
) -> 'Model'
parse_raw
def parse_raw(
    b: Union[str, bytes],
    *,
    content_type: 'unicode' = None,
    encoding: 'unicode' = 'utf8',
    proto: pydantic.parse.Protocol = None,
    allow_pickle: bool = False
) -> 'Model'
schema
def schema(
    by_alias: bool = True,
    ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
    *,
    by_alias: bool = True,
    ref_template: 'unicode' = '#/definitions/{model}',
    **dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
    **localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
    value: Any
) -> 'Model'
Instance variables
fingerprint
includes_input_fingerprint_template
key_types
Methods
copy
def copy(
    self,
    *,
    deep: 'bool' = False,
    validate: 'bool' = True,
    **kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| include | None | fields to include in new model | None | 
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None | 
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to Trueto make a deep copy of the model | None | 
Returns:
| Type | Description | 
|---|---|
| None | new model instance | 
View Source
    def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
        copy = super().copy(deep=deep, **kwargs)
        if validate:
            # NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
            # is normal `.copy` behavior).
            #
            # To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
            # (which includes those originally set + updated).
            fields_set = copy.__fields_set__
            copy = copy.validate(
                dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
            )
            # Use object.__setattr__ to bypass frozen model assignment errors
            object.__setattr__(copy, "__fields_set__", set(fields_set))
            # Copy over the private attributes, which are missing after validation (since we're only
            # passing the fields).
            for name in self.__private_attributes__:
                if (value := getattr(self, name, Undefined)) is not Undefined:
                    if deep:
                        value = deepcopy(value)
                    object.__setattr__(copy, name, value)
        return copy
dict
def dict(
    self,
    *,
    include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
    exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
    by_alias: bool = False,
    skip_defaults: Optional[bool] = None,
    exclude_unset: bool = False,
    exclude_defaults: bool = False,
    exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
discover_partitions
def discover_partitions(
    self,
    input_fingerprints: 'InputFingerprints' = {}
) -> 'tuple[StringLiteralPartition, ...]'
View Source
    def discover_partitions(
        self, input_fingerprints: InputFingerprints = InputFingerprints()
    ) -> tuple[StringLiteralPartition, ...]:
        if input_fingerprints and self.value is not None:
            raise ValueError(
                f"Literal storage cannot have a `value` preset ({self.value}) for a Producer output"
            )
        if self.key_types and not input_fingerprints:
            # We won't know what partitions to lookup.
            raise ValueError("Literal storage can only be partitioned if generated by a Producer.")
        # Existing StringLiteralPartitions may be stored in the Graph's backend, however we don't
        # have access here to lookup.
        if self.value is None:
            return ()
        return tuple(
            self.generate_partition(input_fingerprint=input_fingerprint, keys=keys)
            for keys, input_fingerprint in (
                input_fingerprints or {CompositeKey(): Fingerprint.empty()}
            ).items()
        )
generate_partition
def generate_partition(
    self,
    keys: 'CompositeKey' = {},
    input_fingerprint: 'Fingerprint' = Fingerprint(key=None),
    with_content_fingerprint: 'bool' = True
) -> 'StoragePartitionVar_co'
View Source
    def generate_partition(
        self,
        keys: CompositeKey = CompositeKey(),
        input_fingerprint: Fingerprint = Fingerprint.empty(),
        with_content_fingerprint: bool = True,
    ) -> StoragePartitionVar_co:
        self._check_keys(self.key_types, keys)
        format_kwargs = dict[Any, Any](keys)
        if input_fingerprint.is_empty:
            if self.includes_input_fingerprint_template:
                raise ValueError(f"{self} requires an input_fingerprint, but none was provided")
        else:
            if not self.includes_input_fingerprint_template:
                raise ValueError(f"{self} does not specify a {{input_fingerprint}} template")
            format_kwargs["input_fingerprint"] = str(input_fingerprint.key)
        field_values = {
            name: (
                strip_partition_indexes(original).format(**format_kwargs)
                if lenient_issubclass(type(original := getattr(self, name)), str)
                else original
            )
            for name in self.__fields__
            if name in self.storage_partition_type.__fields__
        }
        partition = self.storage_partition_type(
            input_fingerprint=input_fingerprint, keys=keys, **field_values
        )
        if with_content_fingerprint:
            partition = partition.with_content_fingerprint()
        return partition
json
def json(
    self,
    *,
    include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
    exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
    by_alias: bool = False,
    skip_defaults: Optional[bool] = None,
    exclude_unset: bool = False,
    exclude_defaults: bool = False,
    exclude_none: bool = False,
    encoder: Optional[Callable[[Any], Any]] = None,
    models_as_dict: bool = True,
    **dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
resolve
def resolve(
    self,
    **values: 'str'
) -> 'Self'
View Source
    def resolve(self, **values: str) -> Self:
        return self.copy(
            update={
                name: new
                for name, original in self._format_fields.items()
                # Avoid "setting" the value if not updated to reduce pydantic repr verbosity (which
                # only shows "set" fields by default).
                if (new := self._resolve_field(name, original, values)) != original
            }
        )
StringLiteralPartition
class StringLiteralPartition(
    __pydantic_self__,
    **data: Any
)
View Source
class StringLiteralPartition(StoragePartition):
    id: str
    value: Optional[str]
    def compute_content_fingerprint(self) -> Fingerprint:
        if self.value is None:
            raise _not_written_err
        return Fingerprint.from_string(self.value)
Ancestors (in MRO)
- arti.storage.StoragePartition
- arti.internal.models.Model
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables
Config
Static methods
construct
def construct(
    _fields_set: Optional[ForwardRef('SetStr')] = None,
    **values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow' was set since it adds all passed values
from_orm
def from_orm(
    obj: Any
) -> 'Model'
parse_file
def parse_file(
    path: Union[str, pathlib.Path],
    *,
    content_type: 'unicode' = None,
    encoding: 'unicode' = 'utf8',
    proto: pydantic.parse.Protocol = None,
    allow_pickle: bool = False
) -> 'Model'
parse_obj
def parse_obj(
    obj: Any
) -> 'Model'
parse_raw
def parse_raw(
    b: Union[str, bytes],
    *,
    content_type: 'unicode' = None,
    encoding: 'unicode' = 'utf8',
    proto: pydantic.parse.Protocol = None,
    allow_pickle: bool = False
) -> 'Model'
schema
def schema(
    by_alias: bool = True,
    ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json
def schema_json(
    *,
    by_alias: bool = True,
    ref_template: 'unicode' = '#/definitions/{model}',
    **dumps_kwargs: Any
) -> 'unicode'
update_forward_refs
def update_forward_refs(
    **localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
def validate(
    value: Any
) -> 'Model'
Instance variables
fingerprint
Methods
compute_content_fingerprint
def compute_content_fingerprint(
    self
) -> 'Fingerprint'
View Source
    def compute_content_fingerprint(self) -> Fingerprint:
        if self.value is None:
            raise _not_written_err
        return Fingerprint.from_string(self.value)
copy
def copy(
    self,
    *,
    deep: 'bool' = False,
    validate: 'bool' = True,
    **kwargs: 'Any'
) -> 'Self'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| include | None | fields to include in new model | None | 
| exclude | None | fields to exclude from new model, as with values this takes precedence over include | None | 
| update | None | values to change/add in the new model. Note: the data is not validated before creating | |
| the new model: you should trust this data | None | ||
| deep | None | set to Trueto make a deep copy of the model | None | 
Returns:
| Type | Description | 
|---|---|
| None | new model instance | 
View Source
    def copy(self, *, deep: bool = False, validate: bool = True, **kwargs: Any) -> Self:
        copy = super().copy(deep=deep, **kwargs)
        if validate:
            # NOTE: We set exclude_unset=False so that all existing defaulted fields are reused (as
            # is normal `.copy` behavior).
            #
            # To reduce `repr` noise, we'll reset .__fields_set__ to those of the pre-validation copy
            # (which includes those originally set + updated).
            fields_set = copy.__fields_set__
            copy = copy.validate(
                dict(copy._iter(to_dict=False, by_alias=False, exclude_unset=False))
            )
            # Use object.__setattr__ to bypass frozen model assignment errors
            object.__setattr__(copy, "__fields_set__", set(fields_set))
            # Copy over the private attributes, which are missing after validation (since we're only
            # passing the fields).
            for name in self.__private_attributes__:
                if (value := getattr(self, name, Undefined)) is not Undefined:
                    if deep:
                        value = deepcopy(value)
                    object.__setattr__(copy, name, value)
        return copy
dict
def dict(
    self,
    *,
    include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
    exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
    by_alias: bool = False,
    skip_defaults: Optional[bool] = None,
    exclude_unset: bool = False,
    exclude_defaults: bool = False,
    exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
def json(
    self,
    *,
    include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
    exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
    by_alias: bool = False,
    skip_defaults: Optional[bool] = None,
    exclude_unset: bool = False,
    exclude_defaults: bool = False,
    exclude_none: bool = False,
    encoder: Optional[Callable[[Any], Any]] = None,
    models_as_dict: bool = True,
    **dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
with_content_fingerprint
def with_content_fingerprint(
    self,
    keep_existing: 'bool' = True
) -> 'Self'
View Source
    def with_content_fingerprint(self, keep_existing: bool = True) -> Self:
        if keep_existing and not self.content_fingerprint.is_empty:
            return self
        return self.copy(update={"content_fingerprint": self.compute_content_fingerprint()})